Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа № 8» города Калуги

Рабочая программа

по математике за курс средней общей школы

для 10-11 классов

на 2023 - 2024 учебный год

Составитель программы: Самсонова Наталья Николаевна, учитель математики

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Учебный предмет «Математика» является обязательным общеобразовательным предметом. Согласно учебному плану он изучается на двух уровнях: базовом или углубленном в зависимости от образовательных потребностей обучающихся.

Обучение на базовом уровне нацелено на формирование общей культуры, связано с развивающими и воспитательными целями образования, с социализацией личности и самоопределением дальнейшего жизненного пути старшеклассника. Изучение математики на базовом уровне ставит своей целью овладение целостной системой математических знаний, которая необходима каждому культурному человеку, планирующему продолжить образование в областях, не связанных с математикой.

Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:

- овладение системой математических понятий, основных формул, законов и методов, изучаемых в основной общеобразовательной программе среднего (полного) общего образования;
- осознание роли математики в описании и исследовании реальных процессов и явлений, формирование представлений об идеях и методах математики; представление о математическом моделировании и возможностях его применения;
- овладение математической терминологией и символикой, понятиями и принципами математического доказательства;
- создание условий для формирования умения выдвигать гипотезы, логически обосновывать суждении, понимать необходимость их проверки;
- формирование умения выполнять точные и приближенные вычисления, преобразование
- числовых и буквенных выражений, решение уравнений и неравенств, их систем; решений текстовых задач; исследование функций
- -понимание вероятностного характера окружающего мир; умение оценивать вероятности наступления событий в простейших ситуациях;
- -формирование способности применять приобретенные универсальные учебные действия для решения задач, в том числе задач прикладного характера , из смежных учебных предметов ;
- -развитие способностей изображать изображать плоские и пространственные геометрические фигуры, их комбинаций; чтение геометрических чертежей; описание свойств геометрических фигур, их комбинаций;
- -развитие логики, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для продолжения образования в областях, не требующих специализированной математической подготовки.

Задачи учебного предмета

Содержание образования, представленное в основной школе, развивается в следующих направлениях:

- совершенствование техники вычислений;
- -развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;
- -систематическое изучение свойств геометрических тел в пространстве, развитие пространственных представлений учащихся, освоение способов вычисления практически важных геометрических величин и дальнейшее развитие логического мышления учащихся;
- -систематизация и расширение сведений о функциях, совершенствование графических умений;
- знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;

-формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин.

2. Планируемые результаты освоения учебного предмета

Программа обеспечивает достижения следующих результатов освоения образовательной программы среднего общего образования:

Личностные результаты:

- включающих готовность и способность обучающихся к саморазвитию, личностному самоопределению и самовоспитанию в соответствии с общечеловеческими ценностями;
- сформированность их мотивации к обучению и целенаправленной познавательной деятельности, системы значимых социальных и межличностных отношений, ценностносмысловых установок;
- способность ставить цели и строить жизненные планы;
- готовность и способность к самостоятельной, творческой и ответственной деятельности;
- навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни;
- сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности.

Метапредметные результаты:

- включающих освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные);
- самостоятельность в планировании и осуществлении учебной деятельности и организации учебного сотрудничества с педагогами и сверстниками;
- способность к построению индивидуальной образовательной траектории, владение навыками учебно-исследовательской, проектной и социальной деятельности;
- умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность;
- использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности;
- выбирать успешные стратегии в различных ситуациях;
- умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем;
- способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- готовность и способность к самостоятельной информационно- познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- умение использовать средства информационных и коммуникационных технологий (далее ИКТ) в решении когнитивных, коммуникативных и организационных задач с

соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности; - владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

Цели воспитания

- 1) Усвоение учащимися знаний основных норм, которые общество выработало на основе ценностей (то есть, в усвоении ими социально значимых знаний);
- 2) Развитие у детей позитивных отношений к этим общественным ценностям (то есть в развитии их социально значимых отношений);
- 3) Приобретение учениками соответствующего этим ценностям опыта поведения, опыта применения сформированных знаний и отношений на практике (то есть в приобретении ими опыта осуществления социально значимых дел).

Задачи воспитания

- 1) Реализовывать воспитательные возможности традиционных коллективных дел, поддерживать традиции их коллективного планирования, организации, проведения и анализа в школьном сообществе;
- 2) Использовать в воспитании детей возможности школьного урока, поддерживать использование на уроках интерактивных форм занятий с учащимися;
- 3) Организовывать профориентационную работу со школьниками;
- 4) Создать условия для формирования ценностного отношения к здоровью;
- 5) Организовать работу с семьями школьников, их родителями или законными представителями, направленную на совместное решение проблем личностного развития детей.

Планируемые предметные результаты курса «Математика: алгебра и начала анализа, геометрия»

Выпускник научится (Выпускник получит возможность научиться)

Цели освоения предмета

Для использования в повседневной жизни и обеспечения возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики

Для развития мышления, использования в повседневной жизни и обеспечения возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики

Элементы теории множеств и математической логики

 Оперировать на базовом уровне¹ понятиями: конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал;

¹ Здесь и далее: распознавать конкретные примеры общих понятий по характерным признакам, выполнять действия в соответствии с определением и простейшими свойствами понятий, конкретизировать примерами общие понятия.

- оперировать на базовом уровне понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;
- находить пересечение и объединение двух множеств, представленных графически на числовой прямой;
- строить на числовой прямой подмножество числового множества, заданное простейшими условиями;
- распознавать ложные утверждения, ошибки в рассуждениях, в том числе с использованием контрпримеров.

- использовать числовые множества на координатной прямой для описания реальных процессов и явлений;
- проводить логические рассуждения в ситуациях повседневной жизни
 - Оперировать ² понятиями: конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости;
- оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;
- проверять принадлежность элемента множеству;
- находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;
- проводить доказательные рассуждения для обоснования истинности утверждений.

В повседневной жизни и при изучении других предметов:

использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений; проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов.

Числа и выражения

- Оперировать на базовом уровне понятиями: целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, приближённое значение числа, часть, доля, отношение, процент, повышение и понижение на заданное число процентов, масштаб;
- оперировать на базовом уровне понятиями: логарифм числа, тригонометрическая окружность, градусная мера угла, величина угла, заданного точкой на тригонометрической окружности, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину;
- выполнять арифметические действия с целыми и рациональными числами;
- выполнять несложные преобразования числовых выражений, содержащих степени чисел, либо корни из чисел, либо логарифмы чисел;
- сравнивать рациональные числа между собой;
- оценивать и сравнивать с рациональными числами значения целых степеней чисел, корней натуральной степени из чисел, логарифмов чисел в простых случаях;
- изображать точками на числовой прямой целые и рациональные числа;

 $^{^{2}}$ Здесь и далее; знать определение понятия, уметь пояснять его смысл, уметь использовать понятие и его свойства при проведении рассуждений, решении задач.

- изображать точками на числовой прямой целые степени чисел, корни натуральной степени из чисел, логарифмы чисел в простых случаях;
- выполнять несложные преобразования целых и дробно-рациональных буквенных выражений;
- выражать в простейших случаях из равенства одну переменную через другие;
- вычислять в простых случаях значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
- изображать схематически угол, величина которого выражена в градусах;
- оценивать знаки синуса, косинуса, тангенса, котангенса конкретных углов.

- выполнять вычисления при решении задач практического характера;
- выполнять практические расчеты с использованием при необходимости справочных материалов и вычислительных устройств;
- соотносить реальные величины, характеристики объектов окружающего мира с их конкретными числовыми значениями;
- использовать методы округления, приближения и прикидки при решении практических задач повседневной жизни

Свободно оперировать понятиями: целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, приближённое значение числа, часть, доля, отношение, процент, повышение и понижение на заданное число процентов, масштаб;

- приводить примеры чисел с заданными свойствами делимости;
- оперировать понятиями: логарифм числа, тригонометрическая окружность, радианная и градусная мера угла, величина угла, заданного точкой на тригонометрической окружности, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину, числа е и π;
- выполнять арифметические действия, сочетая устные и письменные приемы, применяя при необходимости вычислительные устройства;
- находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства;
- пользоваться оценкой и прикидкой при практических расчетах;
- проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, корни, логарифмы и тригонометрические функции;
- находить значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
- изображать схематически угол, величина которого выражена в градусах или радианах;
- использовать при решении задач табличные значения тригонометрических функций углов;
- выполнять перевод величины угла из радианной меры в градусную и обратно.

В повседневной жизни и при изучении других учебных предметов:

- выполнять действия с числовыми данными при решении задач практического характера и задач из различных областей знаний, используя при необходимости справочные материалы и вычислительные устройства;
- оценивать, сравнивать и использовать при решении практических задач числовые значения реальных величин, конкретные числовые характеристики объектов окружающего мира

Уравнения и неравенства

- Решать линейные уравнения и неравенства, квадратные уравнения;
- решать логарифмические уравнения вида $\log_a (bx + c) = d$ и простейшие неравенства вида $\log_a x < d$;
- решать показательные уравнения, вида $a^{bx+c} = d$ (где d можно представить в виде степени с основанием a) и простейшие неравенства вида $a^x < d$ (где d можно представить в виде степени с основанием a);
- приводить несколько примеров корней простейшего тригонометрического уравнения вида: $\sin x = a$, $\cos x = a$, $\tan x = a$, $\cot x = a$,

В повседневной жизни и при изучении других предметов: составлять и решать уравнения и системы уравнений при решении несложных практических задач

Решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, неравенства и их системы;

- использовать методы решения уравнений: приведение к виду «произведение равно нулю» или «частное равно нулю», замена переменных;
- использовать метод интервалов для решения неравенств;
- использовать графический метод для приближенного решения уравнений и неравенств;
- изображать на тригонометрической окружности множество решений простейших тригонометрических уравнений и неравенств;
- выполнять отбор корней уравнений или решений неравенств в соответствии с дополнительными условиями и ограничениями.

В повседневной жизни и при изучении других учебных предметов:

- составлять и решать уравнения, системы уравнений и неравенства при решении задач других учебных предметов;
- использовать уравнения и неравенства для построения и исследования простейших математических моделей реальных ситуаций или прикладных задач;

уметь интерпретировать полученный при решении уравнения, неравенства или системы результат, оценивать его правдоподобие в контексте заданной реальной ситуации или прикладной задачи

Функции

- Оперировать на базовом уровне понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период;
- оперировать на базовом уровне понятиями: прямая и обратная пропорциональность линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции;

- распознавать графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, логарифмической и показательной функций, тригонометрических функций;
- соотносить графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, логарифмической и показательной функций, тригонометрических функций с формулами, которыми они заданы;
- находить по графику приближённо значения функции в заданных точках;
- определять по графику свойства функции (нули, промежутки знакопостоянства, промежутки монотонности, наибольшие и наименьшие значения и т.п.);
- строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания / убывания, значение функции в заданной точке, точки экстремумов и т.д.).

– определять по графикам свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства и т.п.);

интерпретировать свойства в контексте конкретной практической ситуации

Оперировать понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции;

- оперировать понятиями: прямая и обратная пропорциональность, линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции:
- определять значение функции по значению аргумента при различных способах задания функции;
- строить графики изученных функций;
- описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
- строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания/убывания, значение функции в заданной точке, точки экстремумов, асимптоты, нули функции и т.д.);
- решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков.

В повседневной жизни и при изучении других учебных предметов:

- определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, период и т.п.);
- интерпретировать свойства в контексте конкретной практической ситуации; определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)

Элементы математического анализа

- Оперировать на базовом уровне понятиями: производная функции в точке, касательная к графику функции, производная функции;
- определять значение производной функции в точке по изображению касательной к графику, проведенной в этой точке;
- решать несложные задачи на применение связи между промежутками монотонности и точками экстремума функции, с одной стороны, и промежутками знакопостоянства и нулями производной этой функции – с другой.

- пользуясь графиками, сравнивать скорости возрастания (роста, повышения, увеличения и т.п.) или скорости убывания (падения, снижения, уменьшения и т.п.) величин в реальных процессах;
- соотносить графики реальных процессов и зависимостей с их описаниями, включающими характеристики скорости изменения (быстрый рост, плавное понижение и т.п.);
- использовать графики реальных процессов для решения несложных прикладных задач,
 в том числе определяя по графику скорость хода процесса

Оперировать понятиями: производная функции в точке, касательная к графику функции, производная функции;

- вычислять производную одночлена, многочлена, квадратного корня, производную суммы функций;
- вычислять производные элементарных функций и их комбинаций, используя справочные материалы;
- исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа.

В повседневной жизни и при изучении других учебных предметов:

 решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик реальных процессов, нахождением наибольших и наименьших значений, скорости и ускорения и т.п.; интерпретировать полученные результаты

Статистика и теория вероятностей, логика и комбинаторика

- Оперировать на базовом уровне основными описательными характеристиками числового набора: среднее арифметическое, медиана, наибольшее и наименьшее значения:
- оперировать на базовом уровне понятиями: частота и вероятность события, случайный выбор, опыты с равновозможными элементарными событиями;
- вычислять вероятности событий на основе подсчета числа исходов.

В повседневной жизни и при изучении других предметов:

оценивать и сравнивать в простых случаях вероятности событий в реальной жизни;
 читать, сопоставлять, сравнивать, интерпретировать в простых случаях реальные данные,
 представленные в виде таблиц, диаграмм, графиков

Иметь представление о дискретных и непрерывных случайных величинах, и распределениях, о независимости случайных величин;

иметь представление о математическом ожидании и дисперсии случайных величин;

- иметь представление о нормальном распределении и примерах нормально распределенных случайных величин;
- понимать суть закона больших чисел и выборочного метода измерения вероятностей;
- иметь представление об условной вероятности и о полной вероятности, применять их в решении задач;
- иметь представление о важных частных видах распределений и применять их в решении задач;
- иметь представление о корреляции случайных величин, о линейной регрессии.

- вычислять или оценивать вероятности событий в реальной жизни;
- выбирать подходящие методы представления и обработки данных; уметь решать несложные задачи на применение закона больших чисел в социологии, страховании, здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях

Текстовые задачи

- Решать несложные текстовые задачи разных типов;
- анализировать условие задачи, при необходимости строить для ее решения математическую модель;
- понимать и использовать для решения задачи информацию, представленную в виде текстовой и символьной записи, схем, таблиц, диаграмм, графиков, рисунков;
- действовать по алгоритму, содержащемуся в условии задачи;
- использовать логические рассуждения при решении задачи;
- работать с избыточными условиями, выбирая из всей информации, данные, необходимые для решения задачи;
- осуществлять несложный перебор возможных решений, выбирая из них оптимальное по критериям, сформулированным в условии;
- анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;
- решать задачи на расчет стоимости покупок, услуг, поездок и т.п.;
- решать несложные задачи, связанные с долевым участием во владении фирмой, предприятием, недвижимостью;
- решать задачи на простые проценты (системы скидок, комиссии) и на вычисление сложных процентов в различных схемах вкладов, кредитов и ипотек;
- решать практические задачи, требующие использования отрицательных чисел: на определение температуры, на определение положения на временной оси (до нашей эры и после), на движение денежных средств (приход/расход), на определение глубины/высоты и т.п.;
- использовать понятие масштаба для нахождения расстояний и длин на картах, планах местности, планах помещений, выкройках, при работе на компьютере и т.п.

В повседневной жизни и при изучении других предметов: решать несложные практические задачи, возникающие в ситуациях повседневной жизни

Решать задачи разных типов, в том числе задачи повышенной трудности;

- выбирать оптимальный метод решения задачи, рассматривая различные методы;
- строить модель решения задачи, проводить доказательные рассуждения;

- решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;
- анализировать и интерпретировать результаты в контексте условия задачи, выбирать решения, не противоречащие контексту;
- переводить при решении задачи информацию из одной формы в другую, используя при необходимости схемы, таблицы, графики, диаграммы;

В повседневной жизни и при изучении других предметов: решать практические задачи и задачи из других предметов

Геометрия

Оперировать на базовом уровне понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей;

- распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб);
- изображать изучаемые фигуры от руки и с применением простых чертежных инструментов;
- делать (выносные) плоские чертежи из рисунков простых объемных фигур: вид сверху, сбоку, снизу;
- извлекать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;
- применять теорему Пифагора при вычислении элементов стереометрических фигур;
- находить объемы и площади поверхностей простейших многогранников с применением формул;
- распознавать основные виды тел вращения (конус, цилиндр, сфера и шар);
- находить объемы и площади поверхностей простейших многогранников и тел вращения с применением формул.

В повседневной жизни и при изучении других предметов:

- соотносить абстрактные геометрические понятия и факты с реальными жизненными объектами и ситуациями;
- использовать свойства пространственных геометрических фигур для решения типовых задач практического содержания;
- соотносить слои поверхностей тел одинаковой формы различного размера;
- соотносить объемы сосудов одинаковой формы различного размера; оценивать форму правильного многогранника после спилов, срезов и т.п. (определять количество вершин, ребер и граней полученных многогранников)

Оперировать понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей;

- применять для решения задач геометрические факты, если условия применения заданы в явной форме;
- решать задачи на нахождение геометрических величин по образцам или алгоритмам;
- делать (выносные) плоские чертежи из рисунков объемных фигур, в том числе рисовать вид сверху, сбоку, строить сечения многогранников;
- извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
- применять геометрические факты для решения задач, в том числе предполагающих несколько шагов решения;
- описывать взаимное расположение прямых и плоскостей в пространстве;
- формулировать свойства и признаки фигур;

- доказывать геометрические утверждения;
- владеть стандартной классификацией пространственных фигур (пирамиды, призмы, параллелепипеды);
- находить объемы и площади поверхностей геометрических тел с применением формул;
- вычислять расстояния и углы в пространстве.

В повседневной жизни и при изучении других предметов: использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний

Векторы и координаты в пространстве

- Оперировать на базовом уровне понятием декартовы координаты в пространстве;
 находить координаты вершин куба и прямоугольного параллелепипеда
- Оперировать понятиями декартовы координаты в пространстве, вектор, модуль вектора, равенство векторов, координаты вектора, угол между векторами, скалярное произведение векторов, коллинеарные векторы;
- находить расстояние между двумя точками, сумму векторов и произведение вектора на число, угол между векторами, скалярное произведение, раскладывать вектор по двум неколлинеарным векторам;
- задавать плоскость уравнением в декартовой системе координат; решать простейшие задачи введением векторного базиса

История математики

- Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
- знать примеры математических открытий и их авторов в связи с отечественной и всемирной историей;

понимать роль математики в развитии России

Представлять вклад выдающихся математиков в развитие математики и иных научных областей;

понимать роль математики в развитии России

Методы математики

- Применять известные методы при решении стандартных математических задач;
- замечать и характеризовать математические закономерности в окружающей действительности;

приводить примеры математических закономерностей в природе, в том числе характеризующих красоту и совершенство окружающего мира и произведений искусства

Использовать основные методы доказательства, проводить доказательство и выполнять опровержение;

- применять основные методы решения математических задач;
- на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;

применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач

_

Место предмета в учебном плане

Согласно учебному плану на изучение математики на уровне среднего общего образования отводится по 5 ч. в неделю в 10 и 11 классах. Программа базового уровня математики рассчитана на 170 часов в 10 классе (34 учебных недель), 165 часов в 11 классе (33 учебные недели).

Тематическое планирование по алгебре и началам анализа

№		Количество часов в	К. р.		
п/п	Наименование раздела	рабочей программе			
	10 класс				
1.	Повторение	6	1		
2.	Степень с действительным показателем	11	1		
3.	Степенная функция	13	1		
4.	Показательная функция	10	1		
5.	Логарифмическая функция	15	1		
6.	Тригонометрические формулы	24	1		
7.	Тригонометрические уравнения	20	1		
8.	Повторение	3	1		
	Итого за год	102	8		
	<u> 11 класс</u>				
	Повторение	10	1		
1.	Тригонометрические функции	19	1		
2.	Производная и её геометрический смысл	19	1		
3.	Применение производной к исследованию функции	14	1		
4.	Производная и интеграл	12	1		
5.	Комбинаторика	9	1		
6.	Элементы теории вероятностей	7	1		
8.	Итоговое повторение	9	1		
	Итого за год	99	8		

Содержание обучения

Алгебра 10 класс

1. Повторение курса алгебры за 7-9 классы

Алгебраические выражения. Линейные уравнения и системы уравнений. Числовые неравенства и неравенства и с одной переменной первой степени. Квадратные корни. Квадратные уравнения и неравенства. Свойства и графики функций.

Основная цель — обобщить и систематизировать знания по основным темам алгебры за 7-9 кл.

2. Степень с действительным показателем

Действительные числа. Бесконечно убывающая геометрическая прогрессия. Арифметический корень натуральной степени. Степень с натуральным и действительным показателями.

Основная цель — обобщить и систематизировать знания о действительных числах; сформировать понятие степени с действительным показателем; научить применять определения арифметического корня и степени, а также их свойства при выполнении вычислений и преобразовании выражений.

Необходимость расширения множества натуральных чисел до действительных

мотивируется возможностью выполнять действия, обратные сложению, умножению и возведению в степень, а значит, возможностью решать уравнения x + a = b, ax = b,

$$x^a = b$$
.

Рассмотренный в начале темы способ обращения бесконечной периодической десятичной дроби в обыкновенную обосновывается свойствами сходящихся числовых рядов, в частности, нахождением суммы бесконечно убывающей геометрической прогрессии.

Действия над иррациональными числами строго не определяются, а заменяются действиями над их приближенными значениями — рациональными числами.

В связи с рассмотрением последовательных рациональных приближений иррационального числа, а затем и степени с иррациональным показателем на интуитивном уровне вводится понятие предела последовательности.

Арифметический корень натуральной степени n > 2 из неотрицательного числа и его свойства излагаются традиционно. Учащиеся должны уметь вычислять значения корня с помощью определения и свойств и выполнять преобразования выражений, содержащих корни.

Степень с иррациональным показателем поясняется на конкретном примере: число $3^{^2}$ рассматривается как последовательность рациональных приближений $3^{1,4}$, $3^{1,41}$, Здесь же формулируются и доказываются свойства степени с действительным показателем, которые будут использоваться при решении уравнений, неравенств, исследовании функций.

3. Степенная функция

Степенная функция, ее свойства и график. Взаимно обратные функции. Сложные функции. Дробно-линейная функция. Равносильные уравнения и неравенства. Иррациональные уравнения. *Иррациональные неравенства*.

Основная цель — обобщить и систематизировать известные из курса алгебры основной школы свойства функций; изучить свойства степенных функций и научить применять их при решении уравнений и неравенств; сформировать понятие равносильности уравнений, неравенств, систем уравнений и неравенств.

Рассмотрение свойств степенных функций и их графиков проводится поэтапно, в зависимости от того, каким числом является показатель: 1) четным натуральным числом; 2) нечетным натуральным числом; 3) числом, противоположным четному натуральному числу; 4) числом, противоположным нечетному натуральному числу.

Обоснования свойств степенной функции не проводятся, они следуют из свойств степени с действительным показателем. Например, возрастание функции $y = x^p$ на промежутке x > 0, где p — положительное нецелое число, следует из свойства: «Если $0 < x_1 < x_2, p > 0$, то $y(x_1) < y(x_2)$. На примере степенных функций учащиеся знакомятся с понятием ограниченной функции.

Рассматриваются функции, называемые взаимно обратными. Важно обратить внимание на то, что не всякая функция имеет обратную.

Знакомство со сложными и дробно-линейными функциями начинается сразу после изучения взаимно обратных функций. Вводятся разные термины для обозначения сложной функции (суперпозиция, композиция), но употребляется лишь один. Этот материал в классах базового уровня изучается лишь в ознакомительном плане.

Определения равносильности уравнений, неравенств и систем уравнений и свойств равносильности дается в связи с предстоящим изучением иррациональных уравнений, неравенств и систем иррациональных уравнений.

Основным методом решения иррациональных уравнений является возведение обеих частей уравнения в степень с целью перехода к рациональному уравнению-следствию данного.

С помощью графиков решается вопрос о наличии корней и их числе, а также о нахождении приближенных корней, если аналитически решить уравнение трудно.

Изучение иррациональных неравенств не является обязательным для всех учащихся. При их изучении на базовом уровне основным способом решения является сведение неравенства к системе рациональных неравенств, равносильной данному.

4. Показательная функция

Показательная функция, ее свойства и график. Показательные уравнения. Показательные неравенства. Системы показательных уравнений и неравенств.

Основная цель — изучить свойства показательной функции; научить решать показательные уравнения и неравенства, системы показательных уравнений.

Свойства показательной функции $y = a^x$ полностью следуют из свойств степени с действительным показателем. Например, возрастание функции $y = a^x$, если a > 1, следует из свойства степени: «Если $x_x < x_2$, то $a^{Xl} < a^{X_2}$ при a > 1».

Решение большинства показательных уравнений и неравенств сводится к решению простейших.

Так как в ходе решения предлагаемых в этой теме показательных уравнений равносильность не нарушается, то проверка найденных корней необязательна. Здесь системы уравнений и неравенств решаются с помощью равносильных преобразований: подстановкой, сложением или умножением, заменой переменных и т. д.

5. Логарифмическая функция

Логарифмы. Свойства логарифмов. Десятичные и натуральные логарифмы. Логарифмическая функция, ее свойства и график. Логарифмические уравнения. Логарифмические неравенства.

Основная цель — сформировать понятие логарифма числа; научить применять свойства логарифмов при решении уравнений; изучить свойства логарифмической функции и научить применять ее свойства при решении логарифмических уравнений и неравенств.

До этой темы в курсе алгебры изучались такие функции, вычисление значений которых сводилось к четырем арифметическим действиям и возведению в степень. Для вычисления значений логарифмической функции нужно уметь находить логарифмы чисел, т. е. выполнять новое для учащихся действие — логарифмирование.

При знакомстве с логарифмами чисел и их свойствами полезны подробные и наглядные объяснения даже в профильных классах.

Доказательство свойств логарифма опирается на его определение. На практике рассматриваются логарифмы по различным основаниям, в частности по основанию 10 (десятичный логарифм) и по основанию *е* (натуральный логарифм), отсюда возникает необходимость формулы перехода от логарифма по одному основанию к логарифму по другому основанию. Так как на инженерном микрокалькуляторе есть клавиши 1g и In, то для вычисления логарифма по основаниям, отличным от 10 и *е*, нужно применить формулу перехода.

Свойства логарифмической функции активно используются при решении логарифмических уравнений и неравенств.

Изучение свойств логарифмической функции проходит совместно с решением уравнений и неравенств.

При решении логарифмических уравнений и неравенств выполняются различные их преобразования. При этом часто нарушается равносильность. Поэтому при решении логарифмических уравнений необходимо либо делать проверку найденных корней, либо строго следить за выполненными преобразованиями, выявляя полученные уравнения-следствия и обосновывая каждый этап преобразования. При решении логарифмических неравенств нужно следить за тем, чтобы равносильность не нарушалась, так как проверку решения неравенства осуществить сложно, а в ряде случаев невозможно.

6. Тригонометрические формулы

Радианная мера угла. Поворот точки вокруг начала координат. Определение синуса, косинуса и тангенса угла. Знаки синуса, косинуса и тангенса. Зависимость между синусом, косинусом и тангенсом одного и того же угла. Тригонометрические тождества. Синус, косинус и тангенс углов ос и -а. Формулы сложения. Синус, косинус и тангенс двойного угла. Синус, косинус и тангенс половинного угла. Формулы приведения. Сумма и разность синусов. Сумма и разность косинусов. Произведение синусов и косинусов.

Основная цель — сформировать понятия синуса, косинуса, тангенса, котангенса числа; научить применять формулы тригонометрии для вычисления значений тригонометрических функций и выполнения преобразований тригонометрических выражений; научить решать простейшие тригонометрические уравнения $\sin x = a$, $\cos x = a$ при a = 1, 1, 0.

Рассматривая определения синуса и косинуса действительного числа a, естественно решить самые простые уравнения, в которых требуется найти число a, если синус или косинус его известен, например уравнения $\sin a = 0$, $\cos a = 1$ и т. п. Поскольку для обозначения неизвестного по традиции используется буква x, то эти уравнения записывают как обычно: $\sin x = 0$, $\cos x = 1$ и т. п. Решения этих уравнений находятся с помощью единичной окружности.

При изучении степеней чисел рассматривались их свойства $a^{p+q} = a^p a^q$, $a^p \sim^q = a^p : a^q$. Подобные свойства справедливы и для синуса, косинуса и тангенса. Эти свойства называют формулами сложения. Практически они выражают зависимость между координатами суммы или разности двух чисел а и P через координаты чисел а и (3. Формулы сложения доказываются для косинуса суммы или разности, все остальные формулы сложения получаются как следствия.

Формулы сложения являются основными формулами тригонометрии, так как все другие можно получить как следствия: формулы двойного и половинного углов (для классов базового уровня не являются обязательными), формулы приведения, преобразования суммы и разности в произведение. Из формул сложения выводятся и формулы замены произведения синусов и косинусов их суммой, что применяется при решении уравнений.

7. Тригонометрические уравнения

Уравнения $\cos x = a$, $\sin x = a$, tgx = a. Тригонометрические уравнения, сводящиеся к алгебраическим. Однородные и линейные уравнения. Методы замены неизвестного и разложения на множители. Метод оценки левой и правой частей тригонометрического уравнения. Системы тригонометрических уравнений. Тригонометрические неравенства.

Основная цель — сформировать понятия арксинуса, арккосинуса, арктангенса числа; научить решать тригонометрические уравнения и системы тригонометрических уравнений, используя различные приемы решения; ознакомить с приемами решения тригонометрических неравенств.

Как и при решении алгебраических, показательных и логарифмических уравнений, решение тригонометрических уравнений путем различных преобразований сводится к решению простейших: $\cos x = a$, $\sin x = a$, tgx = a.

Рассмотрение простейших уравнений начинается с уравнения $\cos x = a$, так как формула его корней проще, чем формула корней уравнения $\sin x = a$ (в их записи часто используется необычный для учащихся указатель знака $(-1)^n$). Решение более сложных тригонометрических уравнений, когда выполняются алгебраические и тригонометрические преобразования, сводится к решению простейших.

Рассматриваются следующие типы тригонометрических уравнений: линейные относительно sinx, cosx или tgx; сводящиеся к квадратным и другим алгебраическим уравнениям после замены неизвестного; сводящиеся к простейшим тригонометрическим уравнениям после разложения на множители.

Рассматриваются простейшие тригонометрические неравенства, которые

решаются с помощью единичной окружности.

8. Повторение

Степень с действительным показателем. Иррациональные уравнения. Показательные уравнения и неравенства. Логарифмические уравнения и неравенства. Решение задач повышенной трудности.

Основная цель — обобщить и систематизировать знания по основным темам алгебры и начал математического анализа за 10 класс.

11 класс

1. Тригонометрические функции

Область определения и множество значений тригонометрических функций. Четность, нечетность, периодичность тригонометрических функций. Свойства функции у=cosx и её график. Свойства функции у=sinx и её график. Свойства функции у=tgx и её график. Обратные тригонометрические функции.

Основная цель — изучить свойства тригонометрических функций, научить учащихся применять эти свойства при решении уравнений и неравенств; научить строить графики тригонометрических функций, используя различные приемы построения графиков.

Среди тригонометрических формул следует особо выделить те формулы, которые непосредственно относятся к исследованию тригонометрических функций и построению их графиков. Так, формулы $\sin(-x)$ =- $\sin x$ и $\cos(-x)$ = $\cos x$ выражают свойства нечетности и четности функций y= $\sin x$ и y= $\cos x$ соответственно.

Построение графиков тригонометрических функций проводится с использованием их свойств и начинается с построения графика функции у=cosx.С помощью графиков тригонометрических функций решаются простейшие тригонометрические уравнения и неравенства.

Учебная цель — введение понятия тригонометрической функции, формирование умений находить область определения и множество значения тригонометрических функций; обучение исследованию тригонометрических функций на четность и нечетность и нахождению периода функции; изучение свойств функции $y = \cos x$, обучение построению графика функции и применению свойств функции при решении уравнений и неравенств; изучение свойств функции и при решении уравнений и неравенств; ознакомление со свойствами функций $y = \tan x$ и $y = \cot x$, изучение свойств функции $y = \cos x$, обучение построению графиков функций и применению свойств функций при решении уравнений и неравенств;

2. Производная и её геометрический смысл

Предел последовательности. Непрерывность функции. Определение производной. Правило дифференцирования. Производная степенной функции. Производные элементарных функций. Геометрический смысл производной.

Основная цель — показать учащимся целесообразность изучения производной и в дальнейшем первообразной (интеграла), так как это необходимо при решении многих практических задач, связанных с исследованием физических явлений, вычислением площадей криволинейных фигур и объемов тел с производными границами, с построением графиков функций. Прежде всего, следует показать, что функции, графиками которых являются кривые, описывают важные физические и технические процессы.

Усвоение геометрического смысла производной и написание уравнения касательной к графику функции в заданной точке является обязательным для всех учащихся.

Овладение правилами дифференцирования суммы, произведения и частного двух функций, вынесения постоянного множителя за знак производной; знакомство с дифференцированием сложных функций и *правилам нахождения производной обратной функции*;обучение использованию формулы производной степенной функции $f(x) = x^p$ для любого действительного р;формирование умений находить производные элементарных функций;знакомство с геометрическим смыслом производной обучение составлению уравнений касательной к графику функции в заданной точке.

3. Применение производной к исследованию функций

Возрастание и убывание функции. Экстремумы функции. Наибольшее и наименьшее значения функции. *Производная второго порядка, выпуклость и точки перегиба*. Построение графиков функций.

Основная цель— является демонстрация возможностей производной в исследовании свойств функций и построении их графиков и применение производной к решению прикладных задач на оптимизацию, дополнительно –применение теоремы Лагранжа для обоснования достаточного условия возрастания и убывания функции, теоремы Ферма и её геометрическому смыслу, а также достаточному условию экстремума, знакомство с понятием асимптоты, производной второго порядка и её приложение к выявлению интегралов выпуклости функции, знакомство с различными прикладными программами, позволяющими построить график функции и исследовать его с помощью компьютера.

Учебная цель – обучение применению достаточных условий возрастания и убывания к нахождению промежутков монотонности функции; знакомство с понятиями точек экстремума функции, стационарных и критических точек, с необходимыми и достаточными условиями экстремума функции; обучение нахождению точек экстремума функции; обучение нахождению наибольшего и наименьшего значений функции с помощью производной; знакомство с понятием второй производной функции и её физическим смыслом; с применением второй производной для нахождения интегралов выпуклости и точек перегиба функции; формирование умения строить графики функций – многочленов с помощью первой производной, с привлечением аппарата второй производной.

4. Первообразная и интеграл

Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции. Интеграл и его вычисление. *Применение интегралов для решения физических задач*.

Основная цель ознакомление учащихся с понятием первообразной и обучение нахождению площадей криволинейных трапеций. Площадь криволинейной трапеции определяется как предел интегральных сумм. Большое внимание уделяется приложениям интегрального исчисления к физическим и геометрическим задачам. Связь между первообразной и площадью криволинейной трапеции устанавливается формулой Ньютона-Лейбница. Далее возникает определенный интеграл как предел интегральной суммы; при этом формула Ньютона-Лейбница также оказывается справедливой. Таким образом, эта формула является главной: с её помощью вычисляются определенные интегралы и находятся площади криволинейных трапеций.

Учебная цель — ознакомление с понятием первообразной, обучение нахождению первообразной для степеней и тригонометрических функций; ознакомление с понятием интегрирования и обучение применению правил интегрирования при нахождении первообразных; формирование понятия криволинейной трапеции, ознакомление с понятием определенного интеграла, обучение вычислению площади криволинейной трапеции в простейших случаях; ознакомить учащихся с применением интегралов для физических задач, научить решать задачи на движение с применением интегралов.

5. Комбинаторика

Правило произведения. Размещения с повторениями. Перестановки. Размещения без повторений. Сочетания без повторений и бином Ньютона.

Основная цель — ознакомление с основными формулами комбинаторики и их применением при решении задач, развивать комбинаторное мышление учащихся, ознакомить с теорией соединений, обосновать формулу бинома Ньютона. Основной при выводе формул числа перестановок и размещений является правило умножения, понимание которого формируется при решении различных прикладных задач. Свойства числа сочетаний доказываются и затем применяются при организации и исследовании треугольника Паскаля.

Учебная цель – овладение одним из основных средств подсчета числа различных соединений, знакомство учащихся с размещениями с повторениями. Знакомство с первым видом соединений – перестановками; демонстрация применения правила произведения при выводе формулы числа перестановок из п элементов. Введение понятия размещения без повторений из м элементов по п; создание математической модели для решения комбинаторных задач, сводимых к подсчету числа размещений; знакомство с сочетаниями и их свойствами; решение комбинаторных задач, сводящихся к подсчету числа сочетаний из м элементов по п; обоснованное конструирование треугольника Паскаля; обучение возведению двучлена в натуральную степень с использованием формулы Ньютона. Составление порядочных множеств (образование перестановок); составление порядочных подмножеств данного множества (образование размещений); доказательство справедливости формул для подсчета числа перестановок с повторениями и числа сочетаний с повторениями, усвоение применения метода математической индукции.

6. Элементы теории вероятностей

Вероятность события. Сложение вероятностей. Вероятность произведения независимых событий.

Основная цель — сформировать понятие вероятности случайного независимого события. Исследование простейших взаимосвязей между различными событиями, а также нахождению вероятностей видов событий через вероятности других событий. Классическое определение вероятности события с равновозможными элементарными исходами формируется строго, и на его основе (с использованием знаний комбинаторики) решается большинство задач. Понятие геометрической вероятности и статистической вероятности вводились на интуитивном уровне. При изложении материала данного раздела подчеркивается прикладное значение теории вероятностей в различных областях знаний и практической деятельности человека.

Учебная цель — знакомство с различными видами событий, комбинациями событий; введение понятия вероятности события и обучение нахождению вероятности случайного события с очевидными благоприятствующими исходами; знакомство с теоремой о вероятности суммы двух несовместных событий и её применением, в частности при нахождении вероятности противоположного события; и с теоремой о вероятности суммы двух производных событий; интуитивное введение понятия независимых событий; обучение нахождению вероятности произведения двух независимых событий.

7. Уравнения и неравенства с двумя переменными

Линейные уравнения и неравенства с двумя переменными. Нелинейные уравнения и неравенства с двумя переменными.

Основная цель – обобщить основные приемы решения уравнений и систем уравнений, научить учащихся изображать на координатной плоскости множество решений линейных неравенств и систем линейных неравенств с двумя переменными, сформировать навыки

решения задач с параметрами, показать применение математических методов для решения содержательных задач из различных областей науки и практики.

Учебная цель – научить учащихся изображать на координатной плоскости множество решений линейных неравенств и систем линейных неравенств с двумя переменными.

8. Итоговое повторение курса алгебры и начал математического анализа

Выражения с корнями. Степенные выражения. Иррациональные выражения. Тригонометрические Логарифмические выражения. преобразования выражений. Иррациональные уравнения. Показательные уравнения. Логарифмические уравнения. Показательные и логарифмические неравенства. Тригонометрические уравнения. Дробнорациональные неравенства. Область определения и область значения функции. Чётные и периодичность функций. нечётные функции, Нули функции. Промежутки знакопостоянства, возрастание и убывание функции. Производная и её применение. Первообразная и её применение.

Уроки итогового повторения имеют своей целью не только восстановление в памяти учащихся основного материала, но и обобщение, уточнение, систематизацию знаний по алгебре и началам математического анализа за курс средней школы.

Повторение проводится по основным содержательно-методическим линиям и выстраивается в следующим порядке: вычисления и преобразования, уравнения и неравенства, функции, начала математического анализа.

Тематическое планирование по геометрии

Название	Содержание	Кол-во	Кол-во			
раздела		часов	к.р.			
10 класс						
Введение.	Представление раздела геометрии –	4	-			
Аксиомы	стереометрии. Основные понятия стереометрии.					
стереометрии и	Аксиомы стереометрии и их следствия.					
их следствия.	Многогранники: куб, параллелепипед,					
	прямоугольный параллелепипед, призма, прямая					
	призма, правильная призма, пирамида,					
	правильная пирамида. Моделирование					
	многогранников из разверток и с помощью					
	геометрического конструктора					
Параллельность	Пересекающиеся, параллельные и	20	2			
прямых и	скрещивающиеся прямые в пространстве.					
плоскостей.	Классификация взаимного расположения двух					
	прямых в пространстве. Признак					
	скрещивающихся прямых. Параллельность					
	прямой и плоскости в пространстве.					
	Классификация взаимного расположения прямой					
	и плоскости. Признак параллельности прямой и					
	плоскости. Параллельность двух плоскостей.					
	Классификация взаимного расположения двух					
	плоскостей. Признак параллельности двух					
	плоскостей. Признаки параллельности двух					
	прямых в пространстве.					

Перпендикулярн ость прямых и плоскостей.	Угол между прямыми в пространстве. Перпендикулярность прямых. Перпендикулярность прямой и плоскости. Признак перпендикулярности прямой и плоскости. Ортогональное проектирование. Перпендикуляр и наклонная. Угол между прямой и плоскостью. Двугранный угол. Линейный угол двугранного угла. Перпендикулярность плоскостей. Признак перпендикулярности двух плоскостей. Расстояние между точками, прямыми и плоскостями	21	1
Многогранники.	Многогранные углы. Выпуклые многогранники и их свойства. Правильные многогранники	15	1
Векторы в пространстве.	Понятие вектора в пространстве. Сложение и вычитания векторов. Умножение вектора на число. Компланарные векторы.	8	1
	11 класс		
Метод координат в пространстве. Движения.	Координаты точки и координаты вектора. Скалярное произведение векторов. Движение.	17	1
Цилиндр, конус, шар.	Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усеченный конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.	19	1
Объемы тел.	Объем прямоугольного параллелепипеда. Объемы прямой призмы и цилиндра. Объемы наклонной призмы, пирамиды и конуса. Объем шара и площадь сферы. Объемы шарового сегмента, шарового слоя и шарового сектора.	20	1
Повторение.		10	1

Содержание обучения геометрии 10 класс

Ввеление

Предмет стереометрии. Основные понятия стереометрии (точка, прямая, плоскость, пространство) и аксиомы стереометрии. Первые следствия из аксиом.

Параллельность прямых и плоскостей.

Пересекающиеся, параллельные и скрещивающиеся прямые. Параллельность прямой и плоскости, признак и свойства. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность плоскостей, признаки и свойства. Изображение пространственных фигур. Тетраэдр и параллелепипед, куб. Сечения куба, призмы, пирамиды.

Перпендикулярность прямых и плоскостей.

Перпендикулярность прямой и плоскости, признаки и свойства.

Перпендикуляр и наклонная. Теорема о трех перпендикулярах. Угол между прямой и плоскостью. Расстояние от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми. Перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла.

Многогранники.

Понятие многогранника, вершины, ребра, грани многогранника. Развертка. Многогранные углы Выпуклые многогранники. Теорема Эйлера.

Призма, ее основание, боковые ребра, высота, боковая и полная поверхности. Прямая и наклонная призма. Правильная призма.

Пирамида, ее основание, боковые ребра, высота, боковая и полная поверхности. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрия в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая и зеркальная). Примеры симметрий в окружающем мире.

Векторы в пространстве.

Понятие вектора в пространстве. Модуль вектора. Равенство векторов. Сложение и вычитание векторов. Коллинеарные векторы. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение вектора по трем некомпланарным векторам.

11 класс

Метод координат в пространстве. Движения.

Прямоугольная система координат в пространстве. Расстояние между точками в пространстве. Векторы в пространстве. Длина вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Координаты вектора. Скалярное произведение векторов.

Цилиндр, конус, шар.

Основные элементы сферы и шара. Взаимное расположение сферы и плоскости. Многогранники, вписанные в сферу. Многогранники, описанные около сферы. Цилиндр и конус. Фигуры вращения.

Объемы тел.

Понятие объема и его свойства. Объем цилиндра, прямоугольного параллелепипеда и призмы. Объем пирамиды. Объем конуса и усеченного конуса. Объем шара и его частей. Площадь поверхности многогранника, цилиндра, конуса, усеченного конуса. Площадь поверхности шара и его частей.

Повторение.

повторить и обобщить знания и умения, учащихся через решение задач по следующим темам: метод координат в пространстве; многогранники; тела вращения; объёмы многогранников и тел вращения.

Список литературы:

- 1. Геометрия, 10–11: учеб. для общеобразоват. учреждений: базовый и профил. уровни/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др., М.: Просвещение, 2011.
- 2. Ершова А. П., Голобородько В.В. Самостоятельные и контрольные работы по геометрии для 10 класса. –6 изд. М.: Илекса, 2013.
- 3. Ершова А. П., Голобородько В.В. Самостоятельные и контрольные работы по геометрии для 11 класса. –6 изд. М.: Илекса, 2013.
- 4. Рабинович Е.М. Задачи и упражнения на готовых чертежах. 10-11 классы. Геометрия.-М. Илекса, 2006

- 5. Ященко И.В. ЕГЭ: 4000 задач с ответами по математике. Все задания «Закрытый сегмент». Базовый и профильный уровни /И. В. Ященко и др.; под ред. И. В. Ященко. М.: Издательство «Экзамен», 2017.
- 6. Программа для общеобразовательных учреждений по алгебре для 10-11 классов, составитель Бурмистрова Т.А., автор Колягин Ю.М. М.: Просвещение, 2011г.
- 7. Учебник: Алгебра и начала анализа для 11 класса, авторов: Ю.М.Колягин, Ю.В.Сидоров, М.В.Ткачёва, Н. Е.Фёдорова и М.И.Шабунин, под редакцией А.Б.Жижченко, М.: Просвещение, 2017г.
- 8. Дидактические материалы для 11 класса «Алгебра и начала математического анализа» авторов М.И.Шабунин, М.В.Ткачёва, Н.Е.Фёдорова, О. Н. Доброва, М.: Просвещение, 2012г.
- 9. Интернет-ресурс:
 - 1. http://alexlarin.net/
 - 2. https://sdamgia.ru/

Дополнительная литература

- 1. Алгебра: учеб. для 9 кл. общеобразов. учреждений / Ю.Н. Макарычев, Н.К. Миндюк, К.И. Нешков, С.Б. Суворова; под ред. С.А. Теляковского. М.: Просвещение, ОАО «Московские учебники», 2017.
- 2. Денищева Л.О. Корешкова Т.А. Алгебра и начала анализа. 10 –11 класс.: Тематические тесты и зачеты для общеобразовательных учреждений. Под ред. А.Г. Мордковича. - М.: Мнемозина, 2015.